OBSERVATIONS OF GOLDEN-MANTLED TAMARINS (*LEONTOCEBUS TRIPARTITUS*) IN AMAZONIAN ECUADOR

Rachel Voyt¹, Sofia Di Fiore², Anthony Di Fiore¹,³

¹ Department of Anthropology, The University of Texas at Austin, Austin, TX, USA. Email: <ravo@utexas.edu>
² Department of Anthropology, University of Oregon, Eugene, OR, USA. Email: <sofia.difiore@gmail.com>
³ Tiputini Biodiversity Station, College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Cumbayá, Ecuador. Email: <anthony.difiore@austin.utexas.edu>

Abstract

Golden-mantled tamarins (*Leontocebus tripartitus*) are an understudied callitrichid primate whose geographic range extends from the Río Napo and Río Curaray in Perú into eastern Ecuador. Only one behavioral study of this species has been published to date, which focused on the population overlapping the Tiputini Biodiversity Station in Amazonian Ecuador over two decades ago. We reevaluated this same population via a two-month preliminary assessment of demography, ranging patterns, and behavior. We located five groups within a roughly 1 km radius of the station, with group sizes ranging from approximately 5 to 11 individuals. Most groups were unhabituated to human presence, but for one group that was well habituated we collected ranging and behavioral data over approximately 101 follow-hours. The group had a mean daily path length of 1,483 m and home range estimates of 25.9 to 39.9 ha, depending on the method used. Intergroup encounters occurred at a rate of 0.08 per follow hour. Group members exhibited substantial variation in cohesion, with individuals routinely traveling, foraging, and sleeping up to 40 m apart. We observed repeated use of several sleep sites as well as the use of a tree hole as a sleep site (the first recorded use for this species) and documented rapid-avoidance and mobbing anti-predator behaviors. These data suggest substantial changes to the Tiputini golden-mantled tamarin population and provide much needed information on callitrichids from the western Amazon, furthering our understanding of variation in socioecology across the callitrichid radiation overall.

Keywords: Golden-mantled tamarins, home range, intergroup encounters, sleep sites, anti-predator behavior

Resumen

El tití de manto dorado (*Leontocebus tripartitus*) es una especie de primates calitrícidos poco estudiada cuya distribución geográfica se extiende desde los Ríos Napo y Curaray en Perú hasta el este de Ecuador. Hasta la fecha, solo un estudio de comportamiento ha sido publicado. Este estudio se realizó hace dos décadas en la población de titíes de La Estación de Biodiversidad de Tiputini. En el presente estudio, reevaluamos la misma población de titíes de manto dorado a través de un estudio preliminar de dos meses enfocado en la demografía, patrones de movimiento y comportamiento. Ubicamos cinco grupos dentro de un radio aproximado de 1 km de la estación, con tamaños de grupo que abarcaron de 5 a 11 individuos. La mayoría de los grupos estaban deshabitados a la presencia humana, pero para un grupo habituado colectamos datos de movimiento y comportamiento durante 101 horas. Este grupo tuvo un promedio de recorrido diario de 1.483 m y su rango de hogar estimado fue de 25,9 a 39,9 ha, dependiendo del método utilizado. Los encuentros entre grupos ocurrieron a una tasa de 0,08 por cada hora de seguimiento. Los miembros del grupo exhibieron niveles de cohesión variable, con individuos rutinariamente moviéndose, forrajeando, y durmiendo a 40 metros de distancia aproximadamente. Observamos el uso repetido de varios dormideros además del uso de un hueco en un árbol como dormidero (el primer registro para esta especie) y documentamos evitación rápida y “mobbing” como comportamientos anti-predatorios. Estos datos sugieren cambios considerables en la población de titíes de manto dorado de Tiputini y proveen información necesaria de los calitrícidos del oeste de la Amazonia, lo que promueve nuestro entendimiento de la variación socioecológica de la radiación de los calitrícidos en general.

Palabras claves: Tití de manto dorado, rango de hogar, encuentros entre grupos, dormideros, comportamiento anti-predatorio
Introduction

Over 500 primate species are recognized, but very little has been published on the behavior and ecology of the majority of taxa. Updated assessments of lesser-studied species are necessary to contribute to our general understanding of behavioral, ecological, and social diversity patterns, as well as to provide a baseline knowledge that may prove essential to conservation efforts as anthropogenic activities continue to threaten primates across the world. One taxonomic group that deserves more attention is the callitrichids, small-bodied platyrhine primates living in Central and South America. Studies of wild callitrichids are few relative to other American primates and fewer still relative to primates overall (Bezanson and McNamara 2019), and those that exist have thus far focused heavily on Atlantic Forest callitrichids (e.g., common marmosets, *Callithrix jacchus*), with information on Amazonian callitrichids still largely lacking. Golden-mantled tamarins (*Leontocebus tripartitus*) are one such species of little-studied Amazonian callitrichid. Their geographic range extends from between the Río Napo and Río Curaray in Perú into eastern Ecuador (Rylands et al. 2011), and only a small number of reports have documented even the most basic data about the species’ population density and group size (Albuja 1994; Heymann 2000; Aquino et al. 2005). These studies, which were usually limited to a few days of observation, suggest a mean group size of approximately 5 to 6 individuals (Thorington Jr. 1988; Albuja 1994; Heymann 2000; Aquino et al. 2005) and a population density ranging from approximately 13 to 27 individuals per km², depending on the location (Aquino et al. 2005, 2014). Our understanding of golden-mantled tamarin behavior is even more limited. Only a single behavioral study exists, which was conducted between 1997 and 1999 at the Tiputini Biodiversity Station in Amazonian Ecuador (76°08’W, 0°38’S, Figure 1) (Kostrub 2003). This study provides an initial characterization of the social and ecological factors mediating group composition dynamics, reproduction, and infant care of golden-mantled tamarins at the site. However, no behavioral study of golden-mantled tamarins has occurred at this site – nor, to the best of our knowledge, at any others – in over two decades.

In a two-month field season at the Tiputini Biodiversity Station in summer 2019, we reevaluated the state of this same population of golden-mantled tamarins through a preliminary assessment of demography, ranging patterns, and behavior. We also documented the occurrence of several behaviors that have not been previously recorded or described for wild golden-mantled tamarins, including variation in group cohesion, aerial and arboreal anti-predator behavior, and sleep site usage.

Methods

We conducted this study from June 16 to August 10, 2019. This time of year was expected to overlap with the mating season for golden-mantled tamarins at the site (Kostrub 2003). We conducted daily surveys to ascertain the approximate number, size, and distribution of golden-mantled tamarin groups in portions of the Tiputini Biodiversity Station trail system as well as habitat usage and ranging patterns of the groups we contacted whenever possible. We conducted surveys between 0545 and 1800 hours by walking established trails multiple times per day and waiting for tamarins at known feeding trees within a ~1 km radius of the station. We also used playbacks of golden-mantled tamarin long-calls, which were originally recorded at the Tiputini Biodiversity Station in 2009 and are archived in the Cornell Lab of Ornithology’s Macaulay Library (ML148787).

When we encountered a group of tamarins, we recorded their habituation level, approximate group size, and location. We judged habituation level based on the group’s tolerance of human presence and, when possible, their tolerance of being followed. We considered groups that immediately fled on contact as “poorly habituated” and those exhibiting little to no noticeable changes in behavior as “well-habituated”. To record group size, we found that path counts (i.e., counts made as a group traveled along a single path) provided the most accurate estimates. However, path counts proved difficult for unhabituated groups, which tended to scatter on contact. We were unable to accurately estimate group sex ratios due to sexual monomorphism in body size and appearance. Age composition estimates were also impossible as the last births likely occurred over five months prior to observations, and offspring had already obtained their adult fur coloring (Kostrub 2003).
Upon encountering groups, we recorded their location as well as their travel paths for as long as we were able to follow them using a datalogging GPS unit worn by the observer (Garmin GPSMAP 64, location records stored at 20 second intervals). On occasions when we were able to follow groups until they entered a sleep tree at the end of the day, we stayed at least 45 minutes to confirm that the group did not change sleeping sites. We returned to the tree before dawn the next day and marked the trees with a GPS waypoint and physical tag once the group exited the tree.

For the single habituated group for which we obtained tracking data covering multiple days (“Lago” group), we calculated daily path length and home range size estimates. We used location records collected during all encounters with the group to estimate home range size, but for calculating daily path lengths we used data only from full-day follows, in which we remained with the group for a minimum of 3 hours from when they exited a sleep tree in the morning until they entered a sleep tree in the evening. Before using GPS data in home range and path length calculations, we extracted location records at regular 15-minute intervals (on the hour and at 15, 30, and 45 minutes past the hour) by averaging all GPS coordinates recorded in the two minutes on either side of those time points. To determine daily path lengths, we used packages sfheaders (Cooley 2020) and sf (Pebesma 2018) for the statistical programming software R (version 4.1.0, R Core Team 2013) to estimate home ranges as 95% minimum convex polygons (Mohr 1947), 95% utilization density kernels (Worton 1989), and 100% local convex hulls (Getz et al. 2007) based on the entire set of 15-minute location records.

We recorded all intergroup encounters during follows, noting the time and location at which they occurred. We considered intergroup encounters to have occurred when neighboring groups were in visual range of each other (i.e., less than 50 m) and exchanged long-calls (Peres 1993; Garber et al. 1993; Kostrub 2003) and/or overt agonistic interactions, such as chases or physical aggression (Kostrub 2003).

Results & Discussion

We encountered an estimated total of five groups within a roughly 1 km radius of the station, but only one was well-habituated to human observers (“Lago” group). The home range of Lago group overlaps some of the most commonly used trails at the station as well as the living quarters and offices of the station itself, likely leading to this group’s high tolerance of human presence and follow. While we did occasionally find other groups near the station, these were usually in areas less commonly used by humans. All other groups usually fled on contact, with follows of these non-habituated groups lasting a maximum of 1 hour and 41 minutes (N = 15 follows, mean follow time: 32 minutes). By contrast, we were able to follow Lago group for multiple days in a row on several occasions, with a total follow time of 101 hours and 5 minutes (N = 21 follows, mean follow time: 4 hours, 49 minutes) across 18 days of the field season.

We confidently ascertained the group size for Lago group (N = 11) and for one of the unhabituated groups (N = 8). We estimated that all other unhabituated groups contained a minimum of 5 individuals. A group size of 11 individuals is the largest documented thus far for Leontocebus tripartitus, with previous surveys reporting a maximum of 10 individuals per group for this species (Albuja 1994). Notably, these counts are substantially larger than those documented in this same population almost two decades prior by Kostrub (2003) (mean group size: 4 individuals, range: 2 to 7 individuals), potentially suggesting an increase in population density over the past 20 years.

We observed substantial variation in group cohesion, with subsets of individuals from Lago group routinely splitting off to travel, forage, or rest up to 30-40 m apart. We also observed one unhabituated group that did not appear to scatter, but to split into two cohesive subgroups of four individuals traveling approximately 50 m apart from one another. Similar observations in Leontocebus tripartitus have previously been coded as a temporary association of two groups (Kostrub 1997), which may have been the case for the unhabituated group. However, such a large group spread also fits with that observed in the habituated group in this study as well as in other tamarin species (e.g., Saguinus labiatus, S. imperator, Leontocebus fuscicollis: Buchanan-Smith 1999), leaving both as potential options.

We also observed behaviors that appeared to be clearly linked to predator presence, including responses to both aerial and arboreal predators. The tamarins exhibited “rapid avoidance” (sensu Ferrari and Ferrari 1990) anti-predator behavior when raptors flew overhead (N=3 observations) as well as in response to a toucan call (N = 1 observation), with two observations of rapid avoidance behavior in response to unknown stimuli. In all situations, the entire group rapidly descended toward the ground and occasionally sought cover by moving onto the ground itself. Raptors and toucans have been previously shown to elicit alarm behavior in other callichrids, with similar avoidance behaviors reported for these and other aerial predators (e.g., Calithrix flaviceps: Ferrari and Ferrari 1990; Saguinus mystax, Leontocebus nigrifrons: Heymann 1990; L. avilapiresi: Peres 1993). We also observed one occasion in which individuals exhibited mobbing behavior toward a tayra (Eira barbara), a member of the weasel family native to the Americas,
where the entire group faced the tayra while emitting loud alarm call and chatter vocalizations until the tayra left the group. "Mobbing" anti-predator behavior in callitrichids appears to be typical for tayra and other non-aerial predators (Bartecki and Heymann 1987; Ferrari and Ferrari 1990; Peres 1993), although studies have reported rapid avoidance responses to non-aerial predators as well (Ferrari and Ferrari 1990).

We obtained 21 total GPS tracks consisting of 410 averaged location records acquired over 18 days from the Lago group (Figure 2), four of which were full-day follows averaging 10 hours 38 minutes ± SD 21 minutes from sleep tree to sleep tree. From these, we calculated a mean daily path length of 1,483 ± 470 m (range: 937 to 2,120 m). This value is consistent with those recorded by Kostrub (2003), who calculated daily path lengths ranging from 466 to 2,308 m (mean=1,470 m; N=63 follows). We also calculated a 95% minimum convex polygon home range estimate of 39.9 ha, which is approximately twice that of the largest home range calculated for this population 20 years ago (21 ha) using the same method, though much closer to those recorded for other small-bodied tamarin species (Digby et al. 2007). Home range size estimates based on the 95% kernel utilization distribution and on 100% local convex hulls (Figure 2) were 30.8 ha and 25.9 ha, respectively.

During our follows of Lago group, we observed 8 intergroup encounters (Figure 2). Intergroup encounters appeared to take place at the edges of the group’s territory no later than 1400 hours, with no more than one encounter observed per day. We observed encounters during three of the four full-day follows, yielding an estimated rate of 0.75 encounters per day. Across the total number of hours spent with Lago group (101 hours, 5 minutes), this rate translates to 0.08 encounters per follow hour. This rate is substantially higher than that found by Kostrub (2003), who observed only six intergroup encounters in 235 observation hours (0.03 encounters per follow hour) during the dry season—the same period as the current study. These rates are instead more similar to those found by Kostrub (2003), who observed 25 intergroup encounters in 323 hours of observation (0.07 encounters per follow hour). The reasons for the higher intergroup encounter rate cannot be determined without additional study, but may be related to changes in population density, food availability, and/or breeding patterns from those observed 20 years ago. The playbacks used in the course of the present study may have also influenced the intergroup encounter rate.

Acknowledgments

We are very grateful to the Ecuadorian government (Ministerio del Medio Ambiente) for granting research permission for our research group’s long-term work at the Tiputini Biodiversity Station (MAE-DNB-CM-2019-0117). Special thanks are also due to Dr. David Romo, Dr. Kelly Swing, and the entire Tiputini Biodiversity Station staff for logistical support. Fieldwork for
this project was supported through grants awarded to the lead author by the Primate Society of Great Britain, the American Society of Mammalogists, and The University of Texas at Austin. Additional field support for AD was provided by The University of Texas at Austin. All research described herein was done in full agreement with all Ecuadorian legislation and approved by The University of Texas at Austin IACUC.

References


Cooley, D. 2020. sfheaders: Converts between R objects and simple feature objects. R package version 0.4.0. https://CRAN.R-project.org/package=sfheaders


